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The coupled motion of a viscous liquid in a cylindrical container with an elastic bottom is
treated. The liquid exhibits a free surface with surface tension. The hydroelastic frequencies
and decay magnitudes are determined for the lower angular- and radial modes, for which the
in#uences of the various parameters are investigated. A new phenomenon was detected,
showing that for low liquid height ratio an aperiodic range appears, in which the viscous
liquid is not able to oscillate. This range decreases with growing membrane tension and
increasing mode number. In addition, it was found that higher liquid modes experience
larger damping and disappear from the motion as time goes on.

( 2001 Academic Press
1. INTRODUCTION

In modern engineering the trend towards thinner and lighter structures is predominant.
This leads to a high #exibility of the system, and yields in structure}liquid systems the
interaction of the elastic structure with the liquid in contact with the structure. Whether we
deal with large-capacity containers for liquid storage or with propellant containers of
missiles, space vehicles, satellites or space stations, the knowledge of the natural frequencies
of the elastic structure and the liquid alone is no longer su$cient for the proper design of the
overall vehicle and its control system. For that reason, one should know the coupled
frequencies as they appear by the interaction of the oscillatory liquid and the elastically
vibrating structure. In many cases the liquid sloshing frequencies are too close to other
frequencies of the system, and result for that reason in a continuous disturbance of the
motion, which in many cases leads even to instabilities and failure. A large number of
analyses and experiments have been performed in recent years [1}26] for circular
cylindrical containers partially "lled with liquid. In all these investigations, the liquid has
been considered frictionless. Damping of surface waves in an incompressible liquid has been
treated for a rigid container approximately by considering the viscous dissipation in an
assumed boundary layer [30]. Just recently, some studies of sloshing viscous liquid have
been treated [27}34] for rigid circular cylindrical containers. In some of these studies [31,
32] the rigid container bottom conditions were satis"ed, while the side wall condition could
0022-460X/01/410033#25 $35.00/0 ( 2001 Academic Press



34 H. F. BAUER AND M. CHIBA
only be satis"ed in its normal boundary condition. These solutions are practically valid for
small aspect ratios h/a(1, for which the e!ect of the adhesion conditions of the tank
bottom are predominant in comparison with sidewall adhesion contributions. For large
aspect ratios h/a'1, the side wall conditions are predominant and have been treated in
references [33, 34] for rigid container bottom. The hydroelastic behavior of a rigid circular
cylinder with a complete coverage of the liquid surface in the form of a #exible membrane or
an elastic plate has been treated for viscous liquid recently [35].

Presented in what follows is an investigation of the coupled frequencies of a hydroelastic
system "lled with a viscous liquid and consisting of a circular cylindrical tank with an elastic
bottom. The structure of the bottom of the container may be described by a #exible
membrane or an elastic plate. The analysis is performed by solving the Stokes equations and
observing only the normal side wall boundary condition. This is justi"ed for small container
"lling aspect ratios h/a(1, where the contribution of the bottom represents the
predominant contribution to the damping behavior of the hydroelastic system.

The problem may also be treated for a container bottom described by an elastic plate
with various boundary conditions. This means that the plate could be considered clamped,
simply supported or guided, such that the rim of the plate would be able to move up and
down the wall of the cylinder, exhibiting no shear forces. The case of elastically supported
boundary, where the edge rotation would be opposed by spiral springs having a distributed
sti!ness K (moment per unit length), could also be treated easily.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

A circular cylindrical container of diameter 2a is "lled to a height h with an
incompressible and viscous liquid of density o and dynamic viscosity g. The container side
wall r"a is considered rigid, while the container bottom is treated as an elastic member of
the system, that may be either described by a #exible membrane or an elastic plate
(Figure 1). The free liquid surface exhibits a surface tension p. Assuming small displacement
and small velocities, the hydroelastic system has to satisfy the Stokes equations
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in axial direction z. The velocity of the liquid is shown by v"ue
r
#veu#wk, p is the

pressure distribution, g the gravity constant and l"g/o the kinematic viscosity. In
addition, the continuity equation
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Figure 1. Cylindrical container with an elastic bottom "lled with viscous liquid.
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has to be satis"ed. The pressure is given by

p (r, u, z, t)"p
o
!ogz#pN (r, u , z, t) (3)

and the free surface conditions are given by
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with f(r, u, t) as the free surface displacement at z"h. Kinematic condition (4) expresses the
equality of the velocity of the free surface with that of a particle at the free surface, while the
dynamic condition (5) is nothing but the normal shear stress relation at the free liquid
surface.

The viscous liquid has to satisfy the vanishing of the normal velocity

u"0 at the wall r"a (6)

and, if it is anchored at z"h, r"a, the vanishing of the motion of the contact line:

f"0 at r"a. (7)
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Actually, the plate exhibits a displacement m* in r direction, g* in u direction and f* in
z direction, which would be described by coupled di!erential equations and three additional
compatibility conditions, i.e., Lm*/Lt"u; Lg*/Lt"v and Lm*/Lt"w at z"0. Assuming,
however, that the radial-(m*) and angular-(g*) displacements of the plate are small
compared to that in axial direction f* yields the compatibility equations (15) and (16). Since
the liquid contact line is considered to be anchored at the wall, the adherence conditions
v"w"0 at r"a are abandoned for that weaker condition of anchored contact line at
r"a, i.e., equation (7).

If the bottom is considered as a membrane, then it will have to satisfy the membrane
equation
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with the boundary condition

f*"0 at r"a (9)

where f*(r, u, t) is the displacement of the membrane, ¹ the tension of the membrane and
k its mass per unit area. If the tank bottom is considered an elastic plate, it has to satisfy
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where D"Ed*3/12(1!l6 2) is the #exural rigidity of the plate, d* its thickness, l6 the Poisson
ratio and E Young's modulus of elasticity. In the analysis, damping of an elastic bottom is
assumed to be negligibly small in comparison with that of the viscous liquid. Equation (10)
has to satisfy the boundary condition for the cases of a

(a) clamped: f*"0 and
Lf*
Lr

"0 at r"a, (11)

(b) simply supported: f*"0 and M
r
"0 at r"a, (12)

(c) free: M
r
"0 and <

r
"0 at r"a, (13)

or

(d) guided: Lf*
Lr

"0 and <
r
"0 at r"a (14)

plate, together with the compatibility conditions

u"v"0 at z"0. (15)

and (not allowing any cavitation)

Lf*
Lt

"w at z"0. (16)
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In these equations
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representing the bending moment and the Kelvin}Kirchho! edge reactions of the plate.

3. METHOD OF SOLUTION

Assuming u, v, w and p6 proportional to e*muest, we obtain with
u(r, u, z, t)"est+

m
;

m
(r, z)e*mu etc., and from the Stokes equation (1) with
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the partial di!erential equations
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and from the continuity equation (2)
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For the solution of these coupled partial di!erential equations, satisfying the rigid wall
condition (6) we apply
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where e
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The dynamic free surface condition (5) yields with equation (25) and the above results
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The anchored edge condition (7) at r"a yields
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Expanding I
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(ar/a) as Dini-Series in the form [38]
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introducing it into equation (28), and comparing it with the results of the kinematic
condition (25) and (26) yields (n"1, 2,2)
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For axisymmetric vibration with m"0, equation (28) exhibits an additional term P*
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for n"1, 2,2

3.1. MEMBRANE BOTTOM

If the bottom is treated as a membrane, equation (8) has to be solved with the boundary
condition (9) and
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We obtain with the compatibility condition (16)
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After expanding I
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(br/a) into a Dini-Series, introducing it into equation (37) and comparing
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for n"1, 2,2 ,
a system of (4n#2) linear homogeneous equations for AI
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coupled hydroelastic system.
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The vanishing determinant of equations (43), (42) and those equations for m"0 like
equations (41), (36), (38) with the additional term PM
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3.2. PLATE BOTTOM

If the bottom is treated as an elastic plate, equation (10) has to be solved with one of the
boundary condition sets (11)}(14) together with the compatibility condition (16). It is with
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3.2.1. Clamped plate
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and
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introducing them into equation (45) and comparing it with the result of the compatibility
condition (16) yields
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for n"1, 2,2 . The vanishing coe$cient determinant of equations (46a), (46b), (47), (36),
(41), (29) and (30) is of order (4n#3) and represents the frequency equation for the
hydroelastic system (mO0) with a plate bottom.

If the system performs axisymmetric oscillations m"0, the elastic plate equation yields
the inhomogeneous and ordinary di!erential equation
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which exhibits the solution
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The clamped-in conditions yield the two equations
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Expanding I
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the results of the compatibility condition (16) yields
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for n"1, 2,2 Here the previous expansion for I
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have been employed. In equations (51a, b), (50a, b), (42), (43), (41), equation (38) for m"0
with the additional term PM

o
, and (36) represent (4n#5) linear homogeneous equations in the
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, of which the vanishing coe$cient

determinant is the coupled frequency equation for axisymmetric motion.

4. NUMERICAL EVALUATIONS AND DISCUSSIONS

Some of the above-obtained analytical results have been evaluated numerically. For
reasons of space, we have concentrated only on a limited amount of results with
a membrane as a structural member, where some coupled axisymmetric (m"0) and
asymmetric (m"1, 2) oscillations have been investigated. The basic parameters of the
present coupled liquid}membrane system are given as: tension parameter ¹*,¹a/ol2,
surface tension parameter p*,pa/ol2"(Oh)~2, gravitational parameter
g*,ga3/l2"Bo/(Oh)2, membrane mass parameter k*,k/oa, the liquid height ratio h/a,
the angular vibration mode m and radial vibration mode n. The above solution is in
particular important for small liquid height ratios h/a, for which most of the liquid
participates in the motion, and for which the adhesive e!ect of the container bottom
contributes the major part to the damped motion. This is due to the fact that the wave
motion penetrates to only about a depth of the order of one wavelength. Therefore
the coupling of the liquid}structure system shows for small h/a a strong e!ect on
the frequencies. For this reason, the range of the liquid height ratio was chosen to be
0)h/a)0)5. For a sti!er bottom, the interaction will become less pronounced due to the
spread of the liquid and membrane frequencies involved. For large liquid height ratios h/a,
the lower part of the liquid nearly behaves like a rigid body, while sloshing takes place in the
immediate vicinity of the free liquid surface, indicating that the sloshing motion and
membrane oscillations hardly in#uence each other. Therefore the in#uence of the adhesive
bottom condition upon the damping diminishes, which suggests that for such a case
the adhesive conditions at the wall, i.e., v"w"0 at r"a (which are neglected in
the above analysis) will have paramount in#uence on the damping behavior of the liquid.
Such a case will require a di!erent analytical approach for the solution of the problem,
which shall be the subject of a follow-on investigation.
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In previous investigations [31, 32], for a rigid container bottom the results show for small
liquid height ratios h/a, that the viscous liquid is no longer able to perform a damped
oscillatory motion, but exhibits only an aperiodic behavior, if disturbed. This newly
detected phenomenon has been obtained for a certain small range of h/a, depending on
some system parameters. In the mentioned investigation, the decrease of the surface tension
parameter p*,pa/ol2 increases this aperiodic region. In addition, with increasing gravity
parameter g*,ga3/l2 the aperiodic region decreases, while the domain, in which
oscillations of the liquid appear, exhibits increased magnitude of the decay- and oscillation
frequency. The viscous oscillation frequency increases for increasing liquid height ratio h/a,
while the decay magnitude decreases. This means that for a larger liquid height ratio h/a, the
damped liquid motion exhibits a less strong decay at larger oscillation frequency. This was
found valid for slipping as well as for anchored contact line, except that the latter case shows
both increased decay and oscillation frequency. The increase of the surface tension
parameter increases the oscillation frequency of the liquid. Thus increasing height ratio h/a
diminishes the in#uence of the container bottom e!ect upon the motion.

In the numerical evaluation of the above-presented analysis, we shall distinguish and
evaluate two cases:

1. frictionless liquid, and
2. viscous liquid

and compare the coupled frequencies of the liquid and that of the membrane with their
uncoupled values (rigid case), i.e., (natural frequencies). For a rigid container bottom, i.e., no
elastic interaction with the bottom structure, we obtain the natural liquid frequencies, of
which the anchored ones exhibit always larger magnitude than those for a slipping contact
line. Such results would also appear if elastic interaction with the container bottom would
be allowed. Such results are omitted here and only the case of an anchored contact line is
numerically treated.

The membrane exhibits, without an additional liquid mass attached to it, the natural
frequencies
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indicating a decrease of the frequency as the liquid mass, i.e., the liquid height ratio h/a
increases. The uncoupled sloshing frequencies are given by [36]
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Figure 2. Coupled complex and uncoupled non-viscous frequencies of asymmetric motion m"1; ¹*"104,
g*"104, k*"10~2 and p*"103; uncoupled non-viscous frequencies (- )} ) } ) } ) - ), viscous liquid frequencies in
container with rigid bottom (- } } } } -), coupled complex frequencies for viscous liquid ( ).

Figure 3. Coupled complex frequency for mode m"1; n"1; ¹*"104, g*"104, k*"10~2 and p*"103.
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Figure 4. Coupled viscous and non-viscous frequencies for asymmetric motion mode m"1; ¹*"104,
g*"104, k*"10~2 and p*"103; viscous ( ), non-viscous (- } } } } -).
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We restrict our numerical evaluations to the parameters magnitudes ¹*"104, g*"104,
p*"103 and k*"10~2 and investigate the in#uence of the liquid height ratio h/a and
angular- as well as radial mode number m and n respectively. For comparison, we use the
uncoupled and coupled [37] frequencies of frictionless liquid and the complex frequencies of
viscous liquid in a container with a rigid bottom [31, 32].

In Figure 2, the coupled complex asymmetric frequencies (m"1) of the viscous liquid are
presented and compared with the complex frequencies of the viscous liquid in a container
with a rigid bottom. In addition, the natural frequencies of a frictionless liquid (} ) } ) } ) }) are
shown. The solid lines are the coupled damped frequencies and their decay magnitudes.
First of all, we notice that the coupled damped frequency increases with increasing liquid
height ratio h/a, and that the decay magnitude decreases. This means that at a larger liquid
height ratio, the coupled motion of the liquid is represented by a less decaying oscillation of
higher frequency. In addition, we detect that below h/a"0)111 only an aperiodic motion
may appear for the "rst radial mode n"1. For the liquid in a container with a rigid bottom,
the oscillation frequency is lower than that of the liquid in a container with an elastic
membrane bottom. The range of aperiodic motion is in a rigid bottom case slightly enlarged
and exhibits the value of 0)h/a)0)119. This shows that the #exibility of the bottom
allows the liquid to continue oscillating in a smaller height range h/a, thus enhancing
oscillations. The natural frequencies for frictionless liquid are always larger. We notice also
that the decay magnitude is slightly increased for the liquid in the container with a rigid
bottom, indicating slightly larger decreases in higher modes n and smaller liquid height
ranges h/a. The heavily indicated point on the d-curves represents the double root, below
which only aperiodic motion is possible. This is for the radial modes n"2 and 3, the ranges
0)h/a)0)069 and 0)h/a)0)050 respectively. The two aperiodic branches are not
presented, but only indicated in the graphs. In Figure 3, we just represent the mode
m"n"1 for a clearer interpretation of the facts just mentioned. The results of



Figure 5. (a) Coupled complex and uncoupled non-viscous axisymmetric frequencies m"0; ¹*"104,
g*"104, k*"10~2 and p*"103; uncoupled non-viscous frequencies (- ) } ) } ) } ) - ), viscous liquid frequencies
with rigid bottom (- } } } } -), coupled complex frequencies ( ). (b) Coupled viscous and non-viscous frequencies
for axisymmetric motion m"0; ¹*"104, g*"104, k*"10~2 and p*"103; viscous ( ), non-viscous
(- } }} } -).
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Figures 2 and 3 have all been compared with those of the viscous liquid frequencies in
a container with a rigid bottom. It was found that the results of Figure 2 agree very well with
previous results and those in the case of an elastic membrane bottom for h/a"0)5. The



Figure 6. (a) Coupled complex and uncoupled non-viscous frequencies for mode m"2; ¹*"104, g*"104,
k*"10~2 and p*"103; uncoupled non-viscous frequencies (- ) } ) } )} ) - ), viscous liquid frequencies with rigid
bottom (- } } }} -), coupled complex frequencies ( ). (b) Coupled viscous and non-viscous frequencies for
m"2; ¹*"104, g*"104, k*"10~2 and p*"103; viscous ( ), non-viscous (- } } } } -).
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damped oscillation frequency of about u+205 is larger than that of the rigid bottom case
[31], which exhibits a magnitude of u

rigid
+199. The same is true for the decay magnitude

which is d+!15)7 and d
rigid

+!15)9, indicating that the liquid in a container with an
elastic bottom decays less fast and for that reason oscillates much longer.



Figure 7. E!ect of membrane tension ¹* on coupled complex liquid frequency for mode m"1, n"1; g*"104,
k*"10~2 and p*"103: ¹*"R, 104, 5]103, 3]103.
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In Figure 4, we represent just the oscillation frequencies u, where we notice the strong
decrease of the coupled membrane frequency [37] with the increase of the liquid height
ratio h/a. This e!ect is due to the growing liquid mass added to the membrane with the
growth of the liquid depth.



Figure 8. E!ect of membrane tension ¹* on critical liquid height, below which only aperiodic motion is
possible: m"0, 1, 2, 3, 4, n"1, 2, 3; g*"104, k*"10~2 and p*"103. ¹*"R, 104, 3]103.
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In Figure 5(a), the coupled axisymmetric complex frequencies m"0 are presented
together with those for a rigid bottom and the frictionless uncoupled frequencies (natural
frequencies). We notice again the growth of the oscillation frequencies with increasing liquid
height ratio h/a and in addition the range of aperiodicity. We also detect the decrease of the
decay magnitude as h/a increases. In Figure 5(b), we represent just oscillation frequencies
u as in Figure 4.

Similar results are presented for the mode m"2 (Figure 6(a) and 6(b)) which show similar
e!ects. For all cases m"0, 1, 2, the range of aperiodicity may be seen in Figure 8. In Figure
7, we represent the e!ect of the membrane tension ¹* on the magnitude of the decay d and
the oscillation frequency u, by changing the tension parameter ¹*,¹a/ol2 as indicated
from 3]103 to in"nity.

First of all, we detect that the decay magnitude does not change much as ¹* increases.
We only notice that for smaller ¹*-values the magnitude d is slightly smaller. This is
presented in this "gure for the lowest vibration mode m"n"1. The points in the d-graph
indicate the beginning of the aperiodic motion range for this mode and exhibit with
increasing #exibility of the membrane, i.e., decreasing ¹*, a decrease of that aperiodic range.
For increasing ¹* the oscillation frequency u decreases as indicated in the u-graph. This
shows that the deviation due to increase of the tension parameter is quite visible for the
oscillation frequency u, but has a minor in#uence upon the decay magnitude. In Figure 8,
we have determined the critical point for the various angular modes m and radial modes n,
below which the liquid shall only perform an aperiodic motion. The in#uence of the
membrane tension parameter ¹* is shown to be decreasing the aperiodic range with
decreasing ¹* for all modes indicated. We also notice that for m"0 the mode n"1 does
not exist.

In Figure 9(a) and 9(b), we exhibit the free liquid surface f and the membrane
displacement f* for the axisymmetric mode m"0. In Figure 9(a), the membrane tension



Figure 9. Vibration modes of the liquid free surface and membrane bottom for m"0, n"1; g*"104,
k*"10~2 and p*"103: h/a"0)1, 0)3, 0)5; (a) ¹*"104; (b) ¹*"3]103.
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parameter was chosen to be ¹*"104 and the liquid- and membrane displacement
are presented for the three liquid "llings h/a"0)1, 0)3 and 0)5. In this case, the free
liquid surface f and the membrane displacement f* are normalized so that the maximum
value is unity. The mode shape of the elevation of the free surface f is not much a!ected
by the di!erent "llings, while the membrane displacement f* de"nitely shows
strong increase for smaller liquid "lling height h/a. Figure 9(b) exhibits similar results
for a low membrane tension parameter of ¹*"3]103. Also, it shows even larger
membrane displacements, indicating that the more #exible the membrane is, the larger
are its displacements; and the larger the "lling heights, the less the displacements.
Figure 10 exhibits such results for the asymmetric oscillation m"1, where the free
surface elevation exhibits only minor change for di!erent liquid "llings and the membrane
de#ection shows again large deviations. Figure 11 presents the in#uence of the membrane
tension parameter at the "lling rate h/a"0)3. With the increase of ¹* from 3]103 to 104,
the maximum of the mode shape of the free liquid surface f shifts toward the inside



Figure 10. Vibration modes m"1, n"1; ¹*"3]103, g*"104, k*"10~2 and p*"103: for di!erent liquid
height ratios h/a"0)1, 0)3, 0)5.
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of the container, i.e., smaller r/a-values, while for the rigid bottom case (¹*PR) the
peak value shifts again towards the container wall. The de#ection f* of the membrane
mode exhibits with increasing ¹*-values a slight shift to the center of the membrane.
In addition, the maximum of the mode shape decreases to zero as ¹*PR (rigid
bottom).



Figure 11. E!ect of membrane tension ¹* on vibration modes for m"1; n"1; g*"104, k*"10~2, p*"103
and h/a"0)3; ¹*"R, 104, 5]103, 3]103.
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5. CONCLUSIONS

From the above results we may conclude the following.
1. Viscosity introduces an aperiodic motion range for the lower liquid "llings.
2. With the growth of the mode number, the magnitude of the aperiodic range decreases.
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3. With increasing liquid "lling height, the decay magnitude decreases, while the oscillation
frequency increases.

4. For higher modes, the oscillation frequencies exhibit larger values as do the decay
magnitudes, indicating that higher modes are damped out rapidly.

5. Increase of the membrane tension ¹* increases the aperiodic range, decreases the
coupled liquid frequency, and has hardly any in#uence on the decay behavior.

6. Liquid "lling ratio h/a has no e!ect upon the shape of the free liquid surface mode, but
has a strong in#uence upon the mode shape of the membrane.

7. The growth of the "lling rate decreases the magnitude of the membrane mode, while for
decreased membrane tension parameter ¹* the magnitude of the mode shape of the
membrane is quite increased.

For the elastic bottom treated as a plate, the above procedure will be algebraically and
numerically more complicated.
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APPENDIX A: NOMENCLATURE

a radius of cylindrical container
Bo Bond number (Bo,oga2/p)
D #exural rigidity of the elastic plate (D*,D/ol2a)
E Young's modulus of elasticity
g gravitational acceleration (g*,ga3/l2)
h liquid height
I
m

modi"ed Bessel function of order m and "rst kind
i imaginary unit
J
m

Bessel function of order m and "rst kind
M

r
moment

Oh Ohnesorge number,(p*)~1@2
p liquid pressure
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p
o

static pressure
r, u, z polar coordinate system
S ,sa2/l(s"pN #iu6 complex frequency)
¹ tension of membrane (¹*,¹a/ol2)
t time (q,tl/a2)
u, v, w velocity components of liquid
<
r

shear force

a parameter a2,
oga2

p
,

g*

p*
"Bo

b parameter b2,(k*S2#g*)/¹*
b*4 (k*S2#g*)/D*
c parameter de"ned by c,Jib*
d ,p6 a2/l dimensionless decay magnitude
d* plate thickness
e
mn

roots of J@
m
(e)"0

e6
mn

roots of J
m
(e6 )"0

g dynamic viscosity
k6
mn

parameter de"ned by k6 2
mn
,e2

mn
#S

k mass per unit area of membrane or plate (k*,k/oa)
l ,g/o kinematic viscosity
l6 Poisson's ratio of plate
m*, g*, f* displacement of membrane or plate
f free surface displacement
o mass density of liquid
p surface tension of liquid (p*,pa/ol2)
/, t de"ned by equation (17a)
u ,u6 a2/l dimensionless oscillation frequency
u(m) uncoupled natural frequency of membrane
u(s) uncoupled natural frequency of liquid
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